

Automated Feature Extraction for the STS National Database: The Impact of Artificial Intelligence

A joint effort between:

Giorgos Margaritis*, Pericles Petrides*, Dimitris Bertsimas, Robert Habib, Agni Orfanoudaki, David Shahian

> October 16th 2023 Informs 2023

THE CHALLENGES OF IMPROVING THE STS DATABASE

- US Hospitals submit data to National Registries for:
 - Hospital evaluation
 - Quality of care
- Society of Thoracic Surgeons (STS):
 - Gold-standard national database
 - Penetration in almost all cardiac programs (97%)
 - Goals:
 - Evaluate & Compare institutions/programs
 - Provide feedback
 - Improve Quality of Care

More than 1000 variables!

MRN	Age	Diabetes	Hypertn	ChrLungD		
12345	25	1	ı	0		
		•••				
Data Manager						
Cardiac Pat	Surgery ient		-	Epic		

A Deep-Dive into the Current Workflow of Data Managers

History & Physical (H&P)

Time: Oct 12th at 11:48
John Doe, 32 y.o. male
History of Present:
Long history of diabetes

Operative Note (Opn)

Time: Oct 13th at 17:00

The patient underwent coronary bypass surgery under general anesthesia.

Lab tests (Labs)

Time: Oct 13th at 09:05

- HbAlc: 5.7
- White blood cells: 6k
- Platelet count: 200k

Medication (Med)

Time: Oct 14th at 11:32

- Insulin injection 100mg
- Lisinopril 20mg
- Augmentin 300mg

Unstructured (text) Records

Structured Records

THE CHALLENGES OF IMPROVING THE STS DATABASE

- Translating EHR Reports to STS format:
 - Manual work from hospitals & STS
 - High operational cost for collaborating hospitals
 - Requires trained and qualified personnel
- Overall, a significant operational overhead.

OBJECTIVE: EXTRACT INFORMATION FOR MULTIPLE VARIABLES FROM MULTIPLE SOURCES

EPIC Data Sources STS Database (Structured and Unstructured Text Files) Data Source **Outcome**

unstructured

Operative Notes History & Physical Reports Cardiology Reports **Pulmonary Notes Pathology Notes** Radiology Reports **Endoscopy Notes** Diagnoses Medicines Labs • • •

structured

- 10+ different sources
- **9,000** patients, multiple visits
- ~20GB of data

(Tabular data with 1000+ variables of interest)

Diabetes

Hypertension

Chronic Lung Disease

Peripheral Arterial Disease

CABG Operation

Aortic Valve Procedure **Atrial Fibrilation**

Post-operative stroke

Post-operative unplanned Aortic Intervention

Expired in Operating Room

• • •

Pre-operative

Intraoperative

Post-operative

WHAT IF WE ONLY HAVE I SOURCE?

PREDICT ONE VARIABLE USING A SINGLE SOURCE

PREDICT ONE VARIABLE USING A SINGLE SOURCE

FEATURE EXTRACTOR 1: TF-IDF

- Simple technique and very fast
- Does not consider word order but only word frequency
- If a word appears in many reports \rightarrow Not very important

In the report

in ALL reports

FEATURE EXTRACTOR 2: CLINICAL BERT

- ClinicalBERT:
 - Transformer-based Large Language Model
 - Trained on MIMIC-III to understand medical text
 - Accounts for context → Contextualized embeddings
- Predict with ClinicalBERT → Fine-tuning:
 - Take a pre-trained BERT model
 - Add a classification NN on top (CLS head)
 - Train BERT+CLS head for few epochs on our data

Trainable Classification Head

Pretrained In clinical notes

S-BERT: USING ALTO SUMMARIZE LARGE REPORTS

- Some reports are very big and cannot be used as an input to the ClinicalBERT model (max input 500 words).
- For those reports, we apply a different AI model to summarize their content and keep only relevant sentences to the variable of interest.

Step I: Find similar sentences to the Target Sentence (STS Manual): "Diabetes, mellitus, blood glucose, hemoglobin AIc, HbAIc"

ACCURACY-COMPLETION TRADE-OFF

- Measure performance with AUC:
 - Also accounts for class imbalance/sparse variables
- Different performance on each outcome
- Issue:
 - Very stringent performance requirements set by doctors (i.e. more 95-97% AUC)
 - What happens if we don't meet them for a particular outcome?

PREDICTING ONLY WHEN WE ARE CONFIDENT

- Find t_1 such that we make few mistakes when classifying **negative** below t_1
- Find t_2 such that we make few mistakes when classifying **positive** above t_2
- If between t_1 and t_2 , leave prediction to the Data Manager
- Higher accuracy requirement:
 - t_1 closer to 0 and t_2 closer to 1
 - More predictions left to the Data Manager
 - Accuracy/Completion trade-off

OVERALL PERFORMANCE PIPELINE: ACCURACY VS COMPLETION RATE THE VARIABLE VIEW

Overall Accuracy: 97.6% 98.1% AI Models AUC: 95.2% 96.5%

Overall Completion %:

47.2%

43.3%

What if we exclude Al-predicted variables with final completion accuracy less than the STS standard of 96%?

- Overall Completion Rate: 40.8%
- Completion Accuracy: 99.7%

CONCLUSIONS

Our proposed Al-based pipeline can:

Lead to substantial reductions of the data collection burden (at least 40%)

Maintain the high-standards of quality and accuracy (at least 99%)

Offer high levels of automation without human involvement (at least 40%)

Improve discrepancies and standardize the database input

Provide a paradigm for other national registries

NEXT STEPS

Extension of the Al pipeline to a wider set of variables

External validation of the pipeline to Hartford Healthcare

Thank you!!

Questions?